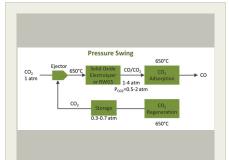
Small Business Innovation Research/Small Business Tech Transfer

Highly Efficient Separation and Re-circulation of Unreacted CO2 in Mars ISRU System, Phase I

Completed Technology Project (2018 - 2019)

Project Introduction

Human exploration of Mars, as well as unmanned sample return missions from Mars can benefit greatly from the use of propellants and life-support consumables produced from the resources available on Mars


Mars' CO_2 rich atmosphere offers an abundant staring material on which to synthesize needed resources such as oxygen, carbon monoxide, and methane. The preferred method of oxygen generation uses a solid oxide electrolyzer (SOE) to produce oxygen in one stream and a mixture of carbon monoxide and carbon dioxide as the waste gases.

TDA Research proposes to develop a highly efficient system for separation and re-circulation of the unreacted ${\rm CO_2}$ from the SOE processes. TDA's system uses a novel adsorbent that removes the unreacted ${\rm CO_2}$ at temperatures > 650°C, without any need for cooling it down. The specific objective of the Phase I work is to develop a regenerable high temperature ${\rm CO_2}$ sorbent that regenerates via thermal swing or pressure (vacuum) swing and demonstrate the ejector concept and thermal swing concept for gas recirculation in a breadboard system.

Anticipated Benefits

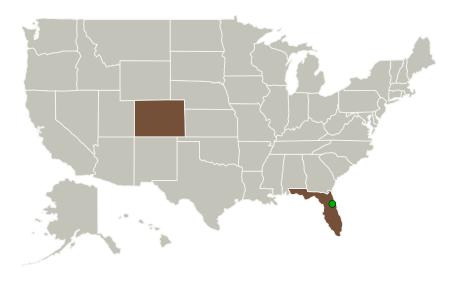
In the ISRU system not all CO_2 that is processed is getting utilized in the reverse water gas shift or the Solid oxide electrolysis step. Therefore, NASA is interested in technologies that allow the unreacted CO_2 from the RWGS (reverse water gas shift) and/or SOE (solid oxide electrolysis) reactors operating at high temperatures (>650°C), to be separated and recirculated back to the process inlet and the proposed sorbents must be able to take up CO_2 at these gas temperatures.

Potential non-NASA application includes pre-combustion ${\rm CO_2}$ capture from Integrated gasification combined cycle power plants and from gasification systems. TDA's ${\rm CO_2}$ removal system would find application in reducing greenhouse gases from power plants and in hydrogen manufacture.

Highly Efficient Separation and Re-circulation of Unreacted CO2 in Mars ISRU System, Phase I

Table of Contents

Project Introduction	1
Anticipated Benefits	1
Primary U.S. Work Locations	
and Key Partners	2
Project Transitions	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Images	3
Technology Areas	3
Target Destination	3


Small Business Innovation Research/Small Business Tech Transfer

Highly Efficient Separation and Re-circulation of Unreacted CO2 in Mars ISRU System, Phase I

Completed Technology Project (2018 - 2019)

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
TDA Research, Inc.	Lead Organization	Industry	Wheat Ridge, Colorado
• Kennedy Space Center(KSC)	Supporting Organization	NASA Center	Kennedy Space Center, Florida

Primary U.S. Work Locations	
Colorado	Florida

Project Transitions

July 2018: Project Start

February 2019: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/141368)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

TDA Research, Inc.

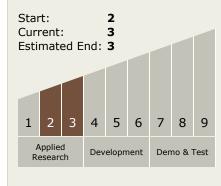
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

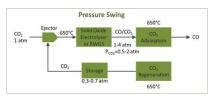

Program Manager:

Carlos Torrez

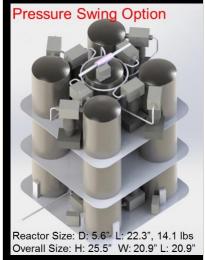
Principal Investigator:

Ambalavanan Jayaraman

Technology Maturity (TRL)


Small Business Innovation Research/Small Business Tech Transfer

Highly Efficient Separation and Re-circulation of Unreacted CO2 in Mars ISRU System, Phase I


Completed Technology Project (2018 - 2019)

Images

Briefing Chart Image

Highly Efficient Separation and Recirculation of Unreacted CO2 in Mars ISRU System, Phase I (https://techport.nasa.gov/imag e/128825)

Final Summary Chart Image

Highly Efficient Separation and Recirculation of Unreacted CO2 in Mars ISRU System, Phase I (https://techport.nasa.gov/image/137214)

Technology Areas

Primary:

- TX07 Exploration Destination Systems
 - ☐ TX07.1 In-Situ Resource Utilization
 - □ TX07.1.3 Resource Processing for Production of Mission Consumables

Target Destination

Mars